一作论文:(*为通讯作者, #为第一作者)
1. Zhang R#, Hu Z#, Wang YT, Hu HZ, Li FC, Li M, Ragauskas A, Xia T, Han HY, Yu HZ*, Xu BQ*, Peng LC*. Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification. Nat Commun, 2023, 14:1100
2. Zhang R#, Hu Z#, Peng H, Liu P, Wang YM, Li JY, Lu J, Wang YT, Xia T*, Peng LC*. High density cellulose nanofibril assembly leads to upgraded enzymatic and chemical catalysis of fermentable sugars, cellulose nanocrystals and cellulase production by precisely engineering cellulose synthase complexes. Green Chem, 2023, 25:1096-1106
3. Zhang R#, Gao HR, Wang YT, He BY, Lu J, Zhu WB, Peng LC, Wang YT*. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. Bioresour Technol, 2022. 369:12831
4. Zhang R#, Hu HZ, Wang YM, Hu Z, Ren SF, Li JY, He BY, Wang YT, Xia T, Chen P, Xie GS, Peng LC*. A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall property and photosynthesis. J Exp Bot, 2020, 71(10):2956-2969
5. Hu HZ#, Zhang R#, Tang YW, Peng CL, Wu LM, Feng SQ, Chen P, Wang YT, Du XZ*, Peng LC*. Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. Plant Mol Biol, 2019, 101:389-401
参与论文:
6. Hu HZ#, Zhang R, Feng SQ, Wang YM, Wang YT, Fan CF, Li Y, Liu ZY, Schneider R, Xia T, Ding SY, Persson S, Peng LC*. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotech J, 2018, 16:976-988
7. Hu HZ#, Zhang R, Dong SC, Li Y, Fan CF, Wang YT, Xia T, Chen P, Wang LQ, Feng SQ, Persson S, Peng LC*. AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. J Exp Bot, 2018, 69:1065-1080
8. Hu HZ#, Zhang R, Tao ZS, Li XK, Li YY, Huang JF, Li XX, Han X, Feng SQ, Zhang GM, Peng LC*. Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant Cell Physiol, 2018, 59:1144-1157
9. Alam A#, Zhang R, Liu P, Huang JF, Wang YT, Hu Z, Madadi M, Sun D, Hu RF, Ragauskas AJ, Tu YY, Peng LC*. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnol Biofuels, 2019, 12:99
10. Guo XY#, Liu YK, Zhang R, Luo JP, Song YC, Li JX, Wu KR, Peng LC, Liu YY, Du YL, Liang YC, Li TQ*. Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil, 2019, 447:1-15
11. Guo XY#, Luo JP, Zhang R, Gao HR, Peng LC, Liang YC, Li TQ*. Root cell remodeling mediates copper oxide nanoparticles phytotoxicity on lettuce (Lactuca sativa L.). Environ Exp Bot, 2022, 200:104906
12. Wu LM#, Zhang ML#, Zhang R, Yu HZ, Wang HL, Li JY, Wang YM, Hu Z, Wang YT, Luo Z, Li L, Wang LQ, Peng LC, Xia T*. Down-regulation of OsMYB103L distinctively alters beta-1,4-glucan polymerization and cellulose microfibers assembly for enhanced biomass enzymatic saccharification in rice. Biotechnol Biofuels, 2022, 14:245
13. Li Y#, Liu P, Huang JF, Zhang R, Hu Z, Feng SQ, Wang YT, Wang LQ, Xia T*, Peng LC*. Mild chemical pretreatments are sufficient for bioethanol production in the transgenic rice straws overproducing glucosidase. Green Chem, 2018, 20:2047-2056
14. Li FC#, Xie GS#, Huang JF, Zhang R, Li Y, Zhang ML, Wang YT, Li A, Li XK, Xia T, Qu CC, Hu F, Ragauskas AJ, Peng LC*. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnol J, 2017, 15:1093-1104
15. Li FC#, Zhang ML, Guo K, Hu Z, Zhang R, Feng YQ, Yi XY, Zou WH, Wang LQ, Wu CY, Tian JS, Lu TG, Xie GS, Peng LC*. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J, 2015, 13:514-525
16. Deng J#, Zhu XB#, Chen P, He BY, Tang SW, Zhao WY, Li XL, Zhang R, Lv ZY, Kang H, Yu L*, Peng LC*. Mechanism of lignocellulose modification and enzyme dis-adsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalks. Sustain Energ Fuels, 2020, 4:607-618
17. Peng H#, Zhao WY#, Liu JY, Liu P, Yu HZ, Deng J, Yang QM, Zhang R, Hu Z, Liu SL, Sun D, Peng LC, Wang YT*. Distinct cellulose nanofibrils generated for improved Pickering emulsions and lignocellulose-degradation enzymes secretion coupled with high bioethanol production in natural rice mutant. Green Chem, 2022, 24:2975-2987
18. Ai YH#, Feng SQ, Wang YM, Lu J, Sun MD, Hu ZZ, Hu Z, Zhang R, Liu P, Peng H, Wang YT, Cao LM, Xia T, Peng LC*. Integrated Ind Crop Prod, 2021, 173:114133
19. Fu YS#, Gao HR, Yu H, Yang QM, Peng H, Liu P, Li YQ, Hu Z, Zhang R, Li JY, Qi Z, Wang LQ, Peng LC, Wang YT*. Specific lignin and cellulose depolymerization of sugarcane bagasse for maximum bioethanol production under optimal chemical fertilizer pretreatment with hemicellulose retention and liquid recycling. Renew Energ. 2022, 200:1371-1381
20. Liu P#, Li A, Wang YM, Cai QM, Yu HZ, Li YQ, Peng H, Li Q, Wang YT, Wei XY, Zhang R, Tu YY, Xia T, Peng LC*. Distinct Miscanthus lignocellulose improves fungus secreting cellulases and xylanases for consistently enhanced biomass saccharification of diverse bioenergy crops. Renew Energ, 2021, 174:799-809
更新日期:20231228